Signatures of a magnetic-field-induced Lifshitz transition in the ultra-quantum limit of the topological semimetal ZrTe5
S. Galeski (),
H. F. Legg (),
R. Wawrzyńczak,
T. Förster,
S. Zherlitsyn,
D. Gorbunov,
M. Uhlarz,
P. M. Lozano,
Q. Li,
G. D. Gu,
C. Felser,
J. Wosnitza,
T. Meng and
J. Gooth ()
Additional contact information
S. Galeski: Max Planck Institute for Chemical Physics of Solids
H. F. Legg: University of Basel
R. Wawrzyńczak: Max Planck Institute for Chemical Physics of Solids
T. Förster: Helmholtz-Zentrum Dresden-Rossendorf
S. Zherlitsyn: Helmholtz-Zentrum Dresden-Rossendorf
D. Gorbunov: Helmholtz-Zentrum Dresden-Rossendorf
M. Uhlarz: Helmholtz-Zentrum Dresden-Rossendorf
P. M. Lozano: Brookhaven National Laboratory
Q. Li: Brookhaven National Laboratory
G. D. Gu: Brookhaven National Laboratory
C. Felser: Max Planck Institute for Chemical Physics of Solids
J. Wosnitza: Helmholtz-Zentrum Dresden-Rossendorf
T. Meng: Technische Universität Dresden
J. Gooth: Max Planck Institute for Chemical Physics of Solids
Nature Communications, 2022, vol. 13, issue 1, 1-7
Abstract:
Abstract The quantum limit (QL) of an electron liquid, realised at strong magnetic fields, has long been proposed to host a wealth of strongly correlated states of matter. Electronic states in the QL are, for example, quasi-one dimensional (1D), which implies perfectly nested Fermi surfaces prone to instabilities. Whereas the QL typically requires unreachably strong magnetic fields, the topological semimetal ZrTe5 has been shown to reach the QL at fields of only a few Tesla. Here, we characterize the QL of ZrTe5 at fields up to 64 T by a combination of electrical-transport and ultrasound measurements. We find that the Zeeman effect in ZrTe5 enables an efficient tuning of the 1D Landau band structure with magnetic field. This results in a Lifshitz transition to a 1D Weyl regime in which perfect charge neutrality can be achieved. Since no instability-driven phase transitions destabilise the 1D electron liquid for the investigated field strengths and temperatures, our analysis establishes ZrTe5 as a thoroughly understood platform for potentially inducing more exotic interaction-driven phases at lower temperatures.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-35106-7 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35106-7
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-35106-7
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().