Growth of alpine grassland will start and stop earlier under climate warming
Patrick Möhl (),
Raphael S. Büren and
Erika Hiltbrunner
Additional contact information
Patrick Möhl: University of Basel
Raphael S. Büren: University of Basel
Erika Hiltbrunner: University of Basel
Nature Communications, 2022, vol. 13, issue 1, 1-10
Abstract:
Abstract Alpine plants have evolved a tight seasonal cycle of growth and senescence to cope with a short growing season. The potential growing season length (GSL) is increasing because of climate warming, possibly prolonging plant growth above- and belowground. We tested whether growth dynamics in typical alpine grassland are altered when the natural GSL (2–3 months) is experimentally advanced and thus, prolonged by 2–4 months. Additional summer months did not extend the growing period, as canopy browning started 34–41 days after the start of the season, even when GSL was more than doubled. Less than 10% of roots were produced during the added months, suggesting that root growth was as conservative as leaf growth. Few species showed a weak second greening under prolonged GSL, but not the dominant sedge. A longer growing season under future climate may therefore not extend growth in this widespread alpine community, but will foster species that follow a less strict phenology.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-022-35194-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35194-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-35194-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().