An embedded interfacial network stabilizes inorganic CsPbI3 perovskite thin films
Julian A. Steele (),
Tom Braeckevelt,
Vittal Prakasam,
Giedrius Degutis,
Haifeng Yuan,
Handong Jin,
Eduardo Solano,
Pascal Puech,
Shreya Basak,
Maria Isabel Pintor-Monroy,
Hans Gorp,
Guillaume Fleury,
Ruo Xi Yang,
Zhenni Lin,
Haowei Huang,
Elke Debroye,
Dmitry Chernyshov,
Bin Chen,
Mingyang Wei,
Yi Hou,
Robert Gehlhaar,
Jan Genoe,
Steven Feyter,
Sven M. J. Rogge,
Aron Walsh,
Edward H. Sargent,
Peidong Yang,
Johan Hofkens,
Veronique Speybroeck () and
Maarten B. J. Roeffaers ()
Additional contact information
Julian A. Steele: KU Leuven
Tom Braeckevelt: Ghent University
Vittal Prakasam: KU Leuven
Giedrius Degutis: KU Leuven
Haifeng Yuan: KU Leuven
Handong Jin: KU Leuven
Eduardo Solano: ALBA synchrotron light source
Pascal Puech: Université de Toulouse
Shreya Basak: IMEC
Maria Isabel Pintor-Monroy: IMEC
Hans Gorp: KU Leuven
Guillaume Fleury: KU Leuven
Ruo Xi Yang: Lawrence Berkeley National Laboratory
Zhenni Lin: Lawrence Berkeley National Laboratory
Haowei Huang: KU Leuven
Elke Debroye: KU Leuven
Dmitry Chernyshov: Swiss-Norwegian Beamlines at the European Synchrotron Radiation Facility
Bin Chen: University of Toronto
Mingyang Wei: University of Toronto
Yi Hou: University of Toronto
Robert Gehlhaar: IMEC
Jan Genoe: IMEC
Steven Feyter: KU Leuven
Sven M. J. Rogge: Ghent University
Aron Walsh: Imperial College London
Edward H. Sargent: University of Toronto
Peidong Yang: University of California
Johan Hofkens: KU Leuven
Veronique Speybroeck: Ghent University
Maarten B. J. Roeffaers: KU Leuven
Nature Communications, 2022, vol. 13, issue 1, 1-11
Abstract:
Abstract The black perovskite phase of CsPbI3 is promising for optoelectronic applications; however, it is unstable under ambient conditions, transforming within minutes into an optically inactive yellow phase, a fact that has so far prevented its widespread adoption. Here we use coarse photolithography to embed a PbI2-based interfacial microstructure into otherwise-unstable CsPbI3 perovskite thin films and devices. Films fitted with a tessellating microgrid are rendered resistant to moisture-triggered decay and exhibit enhanced long-term stability of the black phase (beyond 2.5 years in a dry environment), due to increasing the phase transition energy barrier and limiting the spread of potential yellow phase formation to structurally isolated domains of the grid. This stabilizing effect is readily achieved at the device level, where unencapsulated CsPbI3 perovskite photodetectors display ambient-stable operation. These findings provide insights into the nature of phase destabilization in emerging CsPbI3 perovskite devices and demonstrate an effective stabilization procedure which is entirely orthogonal to existing approaches.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-022-35255-9 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35255-9
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-35255-9
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().