EconPapers    
Economics at your fingertips  
 

A space-based quantum gas laboratory at picokelvin energy scales

Naceur Gaaloul (), Matthias Meister, Robin Corgier, Annie Pichery, Patrick Boegel, Waldemar Herr, Holger Ahlers, Eric Charron, Jason R. Williams, Robert J. Thompson, Wolfgang P. Schleich, Ernst M. Rasel and Nicholas P. Bigelow ()
Additional contact information
Naceur Gaaloul: Leibniz University Hannover, Institute of Quantum Optics, QUEST-Leibniz Research School
Matthias Meister: German Aerospace Center (DLR), Institute of Quantum Technologies
Robin Corgier: Leibniz University Hannover, Institute of Quantum Optics, QUEST-Leibniz Research School
Annie Pichery: Leibniz University Hannover, Institute of Quantum Optics, QUEST-Leibniz Research School
Patrick Boegel: Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Ulm University
Waldemar Herr: Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR), Institut für Satellitengeodäsie und Inertialsensorik (SI)
Holger Ahlers: Leibniz University Hannover, Institute of Quantum Optics, QUEST-Leibniz Research School
Eric Charron: Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay
Jason R. Williams: Jet Propulsion Laboratory, California Institute of Technology
Robert J. Thompson: Jet Propulsion Laboratory, California Institute of Technology
Wolfgang P. Schleich: German Aerospace Center (DLR), Institute of Quantum Technologies
Ernst M. Rasel: Leibniz University Hannover, Institute of Quantum Optics, QUEST-Leibniz Research School
Nicholas P. Bigelow: University of Rochester

Nature Communications, 2022, vol. 13, issue 1, 1-9

Abstract: Abstract Ultracold quantum gases are ideal sources for high-precision space-borne sensing as proposed for Earth observation, relativistic geodesy and tests of fundamental physical laws as well as for studying new phenomena in many-body physics during extended free fall. Here we report on experiments with the Cold Atom Lab aboard the International Space Station, where we have achieved exquisite control over the quantum state of single 87Rb Bose-Einstein condensates paving the way for future high-precision measurements. In particular, we have applied fast transport protocols to shuttle the atomic cloud over a millimeter distance with sub-micrometer accuracy and subsequently drastically reduced the total expansion energy to below 100 pK with matter-wave lensing techniques.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-022-35274-6 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35274-6

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-35274-6

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35274-6