Direct retrieval of Zernike-based pupil functions using integrated diffractive deep neural networks
Elena Goi (),
Steffen Schoenhardt and
Min Gu ()
Additional contact information
Elena Goi: University of Shanghai for Science and Technology
Steffen Schoenhardt: University of Shanghai for Science and Technology
Min Gu: University of Shanghai for Science and Technology
Nature Communications, 2022, vol. 13, issue 1, 1-10
Abstract:
Abstract Retrieving the pupil phase of a beam path is a central problem for optical systems across scales, from telescopes, where the phase information allows for aberration correction, to the imaging of near-transparent biological samples in phase contrast microscopy. Current phase retrieval schemes rely on complex digital algorithms that process data acquired from precise wavefront sensors, reconstructing the optical phase information at great expense of computational resources. Here, we present a compact optical-electronic module based on multi-layered diffractive neural networks printed on imaging sensors, capable of directly retrieving Zernike-based pupil phase distributions from an incident point spread function. We demonstrate this concept numerically and experimentally, showing the direct pupil phase retrieval of superpositions of the first 14 Zernike polynomials. The integrability of the diffractive elements with CMOS sensors shows the potential for the direct extraction of the pupil phase information from a detector module without additional digital post-processing.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-35349-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35349-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-35349-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().