EconPapers    
Economics at your fingertips  
 

Gene augmentation prevents retinal degeneration in a CRISPR/Cas9-based mouse model of PRPF31 retinitis pigmentosa

Zhouhuan Xi, Abhishek Vats, José-Alain Sahel, Yuanyuan Chen and Leah C. Byrne ()
Additional contact information
Zhouhuan Xi: University of Pittsburgh
Abhishek Vats: University of Pittsburgh
José-Alain Sahel: University of Pittsburgh
Yuanyuan Chen: University of Pittsburgh
Leah C. Byrne: University of Pittsburgh

Nature Communications, 2022, vol. 13, issue 1, 1-17

Abstract: Abstract Mutations in PRPF31 cause autosomal dominant retinitis pigmentosa, an untreatable form of blindness. Gene therapy is a promising treatment for PRPF31-retinitis pigmentosa, however, there are currently no suitable animal models in which to develop AAV-mediated gene augmentation. Here we establish Prpf31 mutant mouse models using AAV-mediated CRISPR/Cas9 knockout, and characterize the resulting retinal degeneration phenotype. Mouse models with early-onset morphological and functional impairments like those in patients were established, providing new platforms in which to investigate pathogenetic mechanisms and develop therapeutic methods. AAV-mediated PRPF31 gene augmentation restored the retinal structure and function in a rapidly degenerating mouse model, demonstrating the first in vivo proof-of-concept for AAV-mediated gene therapy to treat PRPF31-retinitis pigmentosa. AAV-CRISPR/Cas9-PRPF31 knockout constructs also mediated efficient PRPF31 knockout in human and non-human primate retinal explants, laying a foundation for establishing non-human primate models using the method developed here.

Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-022-35361-8 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35361-8

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-35361-8

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35361-8