EconPapers    
Economics at your fingertips  
 

A method to build extended sequence context models of point mutations and indels

Jörn Bethune, April Kleppe and Søren Besenbacher ()
Additional contact information
Jörn Bethune: Aarhus University Hospital
April Kleppe: Aarhus University Hospital
Søren Besenbacher: Aarhus University Hospital

Nature Communications, 2022, vol. 13, issue 1, 1-10

Abstract: Abstract The mutation rate of a specific position in the human genome depends on the sequence context surrounding it. Modeling the mutation rate by estimating a rate for each possible k-mer, however, only works for small values of k since the data becomes too sparse for larger values of k. Here we propose a new method that solves this problem by grouping similar k-mers. We refer to the method as k-mer pattern partition and have implemented it in a software package called kmerPaPa. We use a large set of human de novo mutations to show that this new method leads to improved prediction of mutation rates and makes it possible to create models using wider sequence contexts than previous studies. As the first method of its kind, it does not only predict rates for point mutations but also insertions and deletions. We have additionally created a software package called Genovo that, given a k-mer pattern partition model, predicts the expected number of synonymous, missense, and other functional mutation types for each gene. Using this software, we show that the created mutation rate models increase the statistical power to detect genes containing disease-causing variants and to identify genes under strong selective constraint.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-022-35596-5 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35596-5

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-35596-5

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35596-5