Highly active and stable OER electrocatalysts derived from Sr2MIrO6 for proton exchange membrane water electrolyzers
María Retuerto (),
Laura Pascual,
Jorge Torrero,
Mohamed Abdel Salam,
Álvaro Tolosana-Moranchel,
Diego Gianolio,
Pilar Ferrer,
Paula Kayser,
Vincent Wilke,
Svenja Stiber,
Verónica Celorrio,
Mohamed Mokthar,
Daniel García Sanchez,
Aldo Saul Gago,
Kaspar Andreas Friedrich,
Miguel Antonio Peña,
José Antonio Alonso and
Sergio Rojas ()
Additional contact information
María Retuerto: Instituto de Catálisis y Petroleoquímica
Laura Pascual: Instituto de Catálisis y Petroleoquímica
Jorge Torrero: Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR)
Mohamed Abdel Salam: King Abdulaziz University
Álvaro Tolosana-Moranchel: Instituto de Catálisis y Petroleoquímica
Diego Gianolio: Harwell Science and Innovation Campus
Pilar Ferrer: Harwell Science and Innovation Campus
Paula Kayser: Instituto de Ciencia de Materiales de Madrid
Vincent Wilke: Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR)
Svenja Stiber: Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR)
Verónica Celorrio: Harwell Science and Innovation Campus
Mohamed Mokthar: King Abdulaziz University
Daniel García Sanchez: Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR)
Aldo Saul Gago: Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR)
Kaspar Andreas Friedrich: Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR)
Miguel Antonio Peña: Instituto de Catálisis y Petroleoquímica
José Antonio Alonso: Instituto de Ciencia de Materiales de Madrid
Sergio Rojas: Instituto de Catálisis y Petroleoquímica
Nature Communications, 2022, vol. 13, issue 1, 1-10
Abstract:
Abstract Proton exchange membrane water electrolysis is a promising technology to produce green hydrogen from renewables, as it can efficiently achieve high current densities. Lowering iridium amount in oxygen evolution reaction electrocatalysts is critical for achieving cost-effective production of green hydrogen. In this work, we develop catalysts from Ir double perovskites. Sr2CaIrO6 achieves 10 mA cm−2 at only 1.48 V. The surface of the perovskite reconstructs when immersed in an acidic electrolyte and during the first catalytic cycles, resulting in a stable surface conformed by short-range order edge-sharing IrO6 octahedra arranged in an open structure responsible for the high performance. A proton exchange membrane water electrolysis cell is developed with Sr2CaIrO6 as anode and low Ir loading (0.4 mgIr cm−2). The cell achieves 2.40 V at 6 A cm−2 (overload) and no loss in performance at a constant 2 A cm−2 (nominal load). Thus, reducing Ir use without compromising efficiency and lifetime.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41467-022-35631-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35631-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-35631-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().