EconPapers    
Economics at your fingertips  
 

Supercooling of the A phase of 3He

Y. Tian, D. Lotnyk, A. Eyal, K. Zhang, N. Zhelev, T. S. Abhilash, A. Chavez, E. N. Smith, M. Hindmarsh, J. Saunders, E. Mueller and J. M. Parpia ()
Additional contact information
Y. Tian: Cornell University
D. Lotnyk: Cornell University
A. Eyal: Cornell University
K. Zhang: University of Sussex
N. Zhelev: Cornell University
T. S. Abhilash: Cornell University
A. Chavez: Cornell University
E. N. Smith: Cornell University
M. Hindmarsh: University of Sussex
J. Saunders: Royal Holloway University of London
E. Mueller: Cornell University
J. M. Parpia: Cornell University

Nature Communications, 2023, vol. 14, issue 1, 1-9

Abstract: Abstract Because of the extreme purity, lack of disorder, and complex order parameter, the first-order superfluid 3He A–B transition is the leading model system for first order transitions in the early universe. Here we report on the path dependence of the supercooling of the A phase over a wide range of pressures below 29.3 bar at nearly zero magnetic field. The A phase can be cooled significantly below the thermodynamic A–B transition temperature. While the extent of supercooling is highly reproducible, it depends strongly upon the cooling trajectory: The metastability of the A phase is enhanced by transiting through regions where the A phase is more stable. We provide evidence that some of the additional supercooling is due to the elimination of B phase nucleation precursors formed upon passage through the superfluid transition. A greater understanding of the physics is essential before 3He can be exploited to model transitions in the early universe.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-022-35532-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35532-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-35532-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35532-7