BMI-adjusted adipose tissue volumes exhibit depot-specific and divergent associations with cardiometabolic diseases
Saaket Agrawal,
Marcus D. R. Klarqvist,
Nathaniel Diamant,
Takara L. Stanley,
Patrick T. Ellinor,
Nehal N. Mehta,
Anthony Philippakis,
Kenney Ng,
Melina Claussnitzer,
Steven K. Grinspoon,
Puneet Batra and
Amit V. Khera ()
Additional contact information
Saaket Agrawal: Broad Institute of MIT and Harvard
Marcus D. R. Klarqvist: Broad Institute of MIT and Harvard
Nathaniel Diamant: Broad Institute of MIT and Harvard
Takara L. Stanley: Massachusetts General Hospital
Patrick T. Ellinor: Broad Institute of MIT and Harvard
Nehal N. Mehta: National Institutes of Health
Anthony Philippakis: Broad Institute of MIT and Harvard
Kenney Ng: IBM Research
Melina Claussnitzer: Broad Institute of MIT and Harvard
Steven K. Grinspoon: Massachusetts General Hospital
Puneet Batra: Broad Institute of MIT and Harvard
Amit V. Khera: Broad Institute of MIT and Harvard
Nature Communications, 2023, vol. 14, issue 1, 1-10
Abstract:
Abstract For any given body mass index (BMI), individuals vary substantially in fat distribution, and this variation may have important implications for cardiometabolic risk. Here, we study disease associations with BMI-independent variation in visceral (VAT), abdominal subcutaneous (ASAT), and gluteofemoral (GFAT) fat depots in 40,032 individuals of the UK Biobank with body MRI. We apply deep learning models based on two-dimensional body MRI projections to enable near-perfect estimation of fat depot volumes (R2 in heldout dataset = 0.978-0.991 for VAT, ASAT, and GFAT). Next, we derive BMI-adjusted metrics for each fat depot (e.g. VAT adjusted for BMI, VATadjBMI) to quantify local adiposity burden. VATadjBMI is associated with increased risk of type 2 diabetes and coronary artery disease, ASATadjBMI is largely neutral, and GFATadjBMI is associated with reduced risk. These results – describing three metabolically distinct fat depots at scale – clarify the cardiometabolic impact of BMI-independent differences in body fat distribution.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-022-35704-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35704-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-022-35704-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().