EconPapers    
Economics at your fingertips  
 

High-performance Kerr microresonator optical parametric oscillator on a silicon chip

Edgar F. Perez, Grégory Moille, Xiyuan Lu, Jordan Stone, Feng Zhou and Kartik Srinivasan ()
Additional contact information
Edgar F. Perez: NIST/University of Maryland
Grégory Moille: NIST/University of Maryland
Xiyuan Lu: NIST/University of Maryland
Jordan Stone: NIST/University of Maryland
Feng Zhou: NIST/University of Maryland
Kartik Srinivasan: NIST/University of Maryland

Nature Communications, 2023, vol. 14, issue 1, 1-9

Abstract: Abstract Optical parametric oscillation (OPO) is distinguished by its wavelength access, that is, the ability to flexibly generate coherent light at wavelengths that are dramatically different from the pump laser, and in principle bounded solely by energy conservation between the input pump field and the output signal/idler fields. As society adopts advanced tools in quantum information science, metrology, and sensing, microchip OPO may provide an important path for accessing relevant wavelengths. However, a practical source of coherent light should additionally have high conversion efficiency and high output power. Here, we demonstrate a silicon photonics OPO device with unprecedented performance. Our OPO device, based on the third-order (χ(3)) nonlinearity in a silicon nitride microresonator, produces output signal and idler fields widely separated from each other in frequency ( > 150 THz), and exhibits a pump-to-idler conversion efficiency up to 29 % with a corresponding output idler power of > 18 mW on-chip. This performance is achieved by suppressing competitive processes and by strongly overcoupling the output light. This methodology can be readily applied to existing silicon photonics platforms with heterogeneously-integrated pump lasers, enabling flexible coherent light generation across a broad range of wavelengths with high output power and efficiency.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-022-35746-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35746-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-35746-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35746-9