EconPapers    
Economics at your fingertips  
 

Programmable frequency-bin quantum states in a nano-engineered silicon device

Marco Clementi (), Federico Andrea Sabattoli, Massimo Borghi, Linda Gianini, Noemi Tagliavacche, Houssein El Dirani, Laurene Youssef, Nicola Bergamasco, Camille Petit-Etienne, Erwine Pargon, J. E. Sipe, Marco Liscidini, Corrado Sciancalepore, Matteo Galli () and Daniele Bajoni
Additional contact information
Marco Clementi: Università di Pavia
Federico Andrea Sabattoli: Università di Pavia
Massimo Borghi: Università di Pavia
Linda Gianini: Università di Pavia
Noemi Tagliavacche: Università di Pavia
Houssein El Dirani: Univ. Grenoble Alpes, CEA-Leti
Laurene Youssef: Univ. Grenoble Alpes, CNRS, LTM
Nicola Bergamasco: Università di Pavia
Camille Petit-Etienne: Univ. Grenoble Alpes, CNRS, LTM
Erwine Pargon: Univ. Grenoble Alpes, CNRS, CEA/LETI-Minatec, Grenoble INP, LTM
J. E. Sipe: University of Toronto
Marco Liscidini: Università di Pavia
Corrado Sciancalepore: Univ. Grenoble Alpes, CEA-Leti
Matteo Galli: Università di Pavia
Daniele Bajoni: Università di Pavia

Nature Communications, 2023, vol. 14, issue 1, 1-10

Abstract: Abstract Photonic qubits should be controllable on-chip and noise-tolerant when transmitted over optical networks for practical applications. Furthermore, qubit sources should be programmable and have high brightness to be useful for quantum algorithms and grant resilience to losses. However, widespread encoding schemes only combine at most two of these properties. Here, we overcome this hurdle by demonstrating a programmable silicon nano-photonic chip generating frequency-bin entangled photons, an encoding scheme compatible with long-range transmission over optical links. The emitted quantum states can be manipulated using existing telecommunication components, including active devices that can be integrated in silicon photonics. As a demonstration, we show our chip can be programmed to generate the four computational basis states, and the four maximally-entangled Bell states, of a two-qubits system. Our device combines all the key properties of on-chip state reconfigurability and dense integration, while ensuring high brightness, fidelity, and purity.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-022-35773-6 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35773-6

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-022-35773-6

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35773-6