Direct digital sensing of protein biomarkers in solution
Georg Krainer,
Kadi L. Saar,
William E. Arter,
Timothy J. Welsh,
Magdalena A. Czekalska,
Raphaël P. B. Jacquat,
Quentin Peter,
Walther C. Traberg,
Arvind Pujari,
Akhila K. Jayaram,
Pavankumar Challa,
Christopher G. Taylor,
Lize-Mari Linden,
Titus Franzmann,
Roisin M. Owens,
Simon Alberti,
David Klenerman and
Tuomas P. J. Knowles ()
Additional contact information
Georg Krainer: University of Cambridge
Kadi L. Saar: University of Cambridge
William E. Arter: University of Cambridge
Timothy J. Welsh: University of Cambridge
Magdalena A. Czekalska: University of Cambridge
Raphaël P. B. Jacquat: University of Cambridge
Quentin Peter: University of Cambridge
Walther C. Traberg: University of Cambridge
Arvind Pujari: University of Cambridge
Akhila K. Jayaram: University of Cambridge
Pavankumar Challa: University of Cambridge
Christopher G. Taylor: University of Cambridge
Lize-Mari Linden: Technische Universität Dresden
Titus Franzmann: Technische Universität Dresden
Roisin M. Owens: University of Cambridge
Simon Alberti: Technische Universität Dresden
David Klenerman: University of Cambridge
Tuomas P. J. Knowles: University of Cambridge
Nature Communications, 2023, vol. 14, issue 1, 1-21
Abstract:
Abstract The detection of proteins is of central importance to biomolecular analysis and diagnostics. Typical immunosensing assays rely on surface-capture of target molecules, but this constraint can limit specificity, sensitivity, and the ability to obtain information beyond simple concentration measurements. Here we present a surface-free, single-molecule microfluidic sensing platform for direct digital protein biomarker detection in solution, termed digital immunosensor assay (DigitISA). DigitISA is based on microchip electrophoretic separation combined with single-molecule detection and enables absolute number/concentration quantification of proteins in a single, solution-phase step. Applying DigitISA to a range of targets including amyloid aggregates, exosomes, and biomolecular condensates, we demonstrate that the assay provides information beyond stoichiometric interactions, and enables characterization of immunochemistry, binding affinity, and protein biomarker abundance. Taken together, our results suggest a experimental paradigm for the sensing of protein biomarkers, which enables analyses of targets that are challenging to address using conventional immunosensing approaches.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41467-023-35792-x Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35792-x
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-35792-x
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().