Bio-inspired magnetic-driven folded diaphragm for biomimetic robot
Dezhao Lin,
Fan Yang (),
Di Gong and
Ruihong Li
Additional contact information
Dezhao Lin: Huaqiao University
Fan Yang: Huaqiao University
Di Gong: Huaqiao University
Ruihong Li: Huaqiao University
Nature Communications, 2023, vol. 14, issue 1, 1-10
Abstract:
Abstract Functional soft materials, exhibiting multiple types of deformation, have shown their potential/abilities to achieve complicated biomimetic behaviors (soft robots). Inspired by the locomotion of earthworm, which is conducted through the contraction and stretching between body segments, this study proposes a type of one-piece-mold folded diaphragm, consisting of the structure of body segments with radial magnetization property, to achieve large 3D and bi-directional deformation with inside-volume change capability subjected to the low homogeneous magnetically driving field (40 mT). Moreover, the appearance based on the proposed magnetic-driven folded diaphragm is able to be easily customized to desired ones and then implanted into different untethered soft robotic systems as soft drivers. To verify the above points, we design the diaphragm pump providing unique properties of lightweight, powerful output and rapid response, and the soft robot including the bio-earthworm crawling robot and swimming robot inspired by squid to exhibit the flexible and rapid locomotion excited by single homogeneous magnetic fields.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-023-35905-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35905-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-35905-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().