Silver nanoparticle enhanced metal-organic matrix with interface-engineering for efficient photocatalytic hydrogen evolution
Yannan Liu,
Cheng-Hao Liu,
Tushar Debnath,
Yong Wang,
Darius Pohl,
Lucas V. Besteiro,
Debora Motta Meira,
Shengyun Huang,
Fan Yang,
Bernd Rellinghaus,
Mohamed Chaker,
Dmytro F. Perepichka and
Dongling Ma ()
Additional contact information
Yannan Liu: Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifque (INRS) 1650 Boul. Lionel-Boulet
Cheng-Hao Liu: McGill University
Tushar Debnath: Ludwig-Maximilians-University, Königinstr. 10
Yong Wang: Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifque (INRS) 1650 Boul. Lionel-Boulet
Darius Pohl: Dresden Center for Nanoanalysis (DCN)
Lucas V. Besteiro: CINBIO, Universidade de Vigo
Debora Motta Meira: CLS@APS sector 20, Advanced Photon Source, Argonne National Laboratory
Shengyun Huang: Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifque (INRS) 1650 Boul. Lionel-Boulet
Fan Yang: Stanford University
Bernd Rellinghaus: Dresden Center for Nanoanalysis (DCN)
Mohamed Chaker: Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifque (INRS) 1650 Boul. Lionel-Boulet
Dmytro F. Perepichka: McGill University
Dongling Ma: Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifque (INRS) 1650 Boul. Lionel-Boulet
Nature Communications, 2023, vol. 14, issue 1, 1-12
Abstract:
Abstract Integrating plasmonic nanoparticles into the photoactive metal-organic matrix is highly desirable due to the plasmonic near field enhancement, complementary light absorption, and accelerated separation of photogenerated charge carriers at the junction interface. The construction of a well-defined, intimate interface is vital for efficient charge carrier separation, however, it remains a challenge in synthesis. Here we synthesize a junction bearing intimate interface, composed of plasmonic Ag nanoparticles and matrix with silver node via a facile one-step approach. The plasmonic effect of Ag nanoparticles on the matrix is visualized through electron energy loss mapping. Moreover, charge carrier transfer from the plasmonic nanoparticles to the matrix is verified through ultrafast transient absorption spectroscopy and in-situ photoelectron spectroscopy. The system delivers highly efficient visible-light photocatalytic H2 generation, surpassing most reported metal-organic framework-based photocatalytic systems. This work sheds light on effective electronic and energy bridging between plasmonic nanoparticles and organic semiconductors.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-023-35981-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35981-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-35981-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().