EconPapers    
Economics at your fingertips  
 

Electricity-driven asymmetric bromocyclization enabled by chiral phosphate anion phase-transfer catalysis

Xuefeng Tan (), Qingli Wang and Jianwei Sun ()
Additional contact information
Xuefeng Tan: The Hong Kong University of Science and Technology (HKUST)
Qingli Wang: The Hong Kong University of Science and Technology (HKUST)
Jianwei Sun: The Hong Kong University of Science and Technology (HKUST)

Nature Communications, 2023, vol. 14, issue 1, 1-9

Abstract: Abstract Electricity-driven asymmetric catalysis is an emerging powerful tool in organic synthesis. However, asymmetric induction so far has mainly relied on forming strong bonds with a chiral catalyst. Asymmetry induced by weak interactions with a chiral catalyst in an electrochemical medium remains challenging due to compatibility issues related to solvent polarity, electrolyte interference, etc. Enabled by a properly designed phase-transfer strategy, here we have achieved two efficient electricity-driven catalytic asymmetric bromocyclization processes induced by weak ion-pairing interaction. The combined use of a phase-transfer catalyst and a chiral phosphate catalyst, together with NaBr as the bromine source, constitutes the key advantages over the conventional chemical oxidation approach. Synergy over multiple events, including anodic oxidation, ion exchange, phase transfer, asymmetric bromination, and inhibition of Br2 decomposition by NaHCO3, proved critical to the success.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-36000-6 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36000-6

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-36000-6

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36000-6