EconPapers    
Economics at your fingertips  
 

Long-lived electronic spin qubits in single-walled carbon nanotubes

Jia-Shiang Chen, Kasidet Jing Trerayapiwat, Lei Sun, Matthew D. Krzyaniak, Michael R. Wasielewski, Tijana Rajh, Sahar Sharifzadeh and Xuedan Ma ()
Additional contact information
Jia-Shiang Chen: Argonne National Laboratory
Kasidet Jing Trerayapiwat: Boston University
Lei Sun: Argonne National Laboratory
Matthew D. Krzyaniak: Northwestern University
Michael R. Wasielewski: Argonne National Laboratory
Tijana Rajh: Argonne National Laboratory
Sahar Sharifzadeh: Boston University
Xuedan Ma: Argonne National Laboratory

Nature Communications, 2023, vol. 14, issue 1, 1-8

Abstract: Abstract Electron spins in solid-state systems offer the promise of spin-based information processing devices. Single-walled carbon nanotubes (SWCNTs), an all-carbon one-dimensional material whose spin-free environment and weak spin-orbit coupling promise long spin coherence times, offer a diverse degree of freedom for extended range of functionality not available to bulk systems. A key requirement limiting spin qubit implementation in SWCNTs is disciplined confinement of isolated spins. Here, we report the creation of highly confined electron spins in SWCNTs via a bottom-up approach. The record long coherence time of 8.2 µs and spin-lattice relaxation time of 13 ms of these electronic spin qubits allow demonstration of quantum control operation manifested as Rabi oscillation. Investigation of the decoherence mechanism reveals an intrinsic coherence time of tens of milliseconds. These findings evident that combining molecular approaches with inorganic crystalline systems provides a powerful route for reproducible and scalable quantum materials suitable for qubit applications.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-36031-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36031-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-36031-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36031-z