EconPapers    
Economics at your fingertips  
 

Open-circuit and short-circuit loss management in wide-gap perovskite p-i-n solar cells

Pietro Caprioglio (), Joel A. Smith, Robert D. J. Oliver, Akash Dasgupta, Saqlain Choudhary, Michael D. Farrar, Alexandra J. Ramadan, Yen-Hung Lin, M. Greyson Christoforo, James M. Ball, Jonas Diekmann, Jarla Thiesbrummel, Karl-Augustin Zaininger, Xinyi Shen, Michael B. Johnston, Dieter Neher, Martin Stolterfoht and Henry J. Snaith ()
Additional contact information
Pietro Caprioglio: University of Oxford, Clarendon Laboratory
Joel A. Smith: University of Oxford, Clarendon Laboratory
Robert D. J. Oliver: University of Oxford, Clarendon Laboratory
Akash Dasgupta: University of Oxford, Clarendon Laboratory
Saqlain Choudhary: University of Oxford, Clarendon Laboratory
Michael D. Farrar: University of Oxford, Clarendon Laboratory
Alexandra J. Ramadan: University of Oxford, Clarendon Laboratory
Yen-Hung Lin: University of Oxford, Clarendon Laboratory
M. Greyson Christoforo: University of Oxford, Clarendon Laboratory
James M. Ball: University of Oxford, Clarendon Laboratory
Jonas Diekmann: University of Potsdam
Jarla Thiesbrummel: University of Oxford, Clarendon Laboratory
Karl-Augustin Zaininger: University of Oxford, Clarendon Laboratory
Xinyi Shen: University of Oxford, Clarendon Laboratory
Michael B. Johnston: University of Oxford, Clarendon Laboratory
Dieter Neher: University of Potsdam
Martin Stolterfoht: University of Potsdam
Henry J. Snaith: University of Oxford, Clarendon Laboratory

Nature Communications, 2023, vol. 14, issue 1, 1-13

Abstract: Abstract In this work, we couple theoretical and experimental approaches to understand and reduce the losses of wide bandgap Br-rich perovskite pin devices at open-circuit voltage (VOC) and short-circuit current (JSC) conditions. A mismatch between the internal quasi-Fermi level splitting (QFLS) and the external VOC is detrimental for these devices. We demonstrate that modifying the perovskite top-surface with guanidinium-Br and imidazolium-Br forms a low-dimensional perovskite phase at the n-interface, suppressing the QFLS-VOC mismatch, and boosting the VOC. Concurrently, the use of an ionic interlayer or a self-assembled monolayer at the p-interface reduces the inferred field screening induced by mobile ions at JSC, promoting charge extraction and raising the JSC. The combination of the n- and p-type optimizations allows us to approach the thermodynamic potential of the perovskite absorber layer, resulting in 1 cm2 devices with performance parameters of VOCs up to 1.29 V, fill factors above 80% and JSCs up to 17 mA/cm2, in addition to a thermal stability T80 lifetime of more than 3500 h at 85 °C.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-36141-8 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36141-8

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-36141-8

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36141-8