EconPapers    
Economics at your fingertips  
 

Dark microbiome and extremely low organics in Atacama fossil delta unveil Mars life detection limits

Armando Azua-Bustos (), Alberto G. Fairén, Carlos González-Silva, Olga Prieto-Ballesteros, Daniel Carrizo, Laura Sánchez-García, Victor Parro, Miguel Ángel Fernández-Martínez, Cristina Escudero, Victoria Muñoz-Iglesias, Maite Fernández-Sampedro, Antonio Molina, Miriam García Villadangos, Mercedes Moreno-Paz, Jacek Wierzchos, Carmen Ascaso, Teresa Fornaro, John Robert Brucato, Giovanni Poggiali, Jose Antonio Manrique, Marco Veneranda, Guillermo López-Reyes, Aurelio Sanz-Arranz, Fernando Rull, Ann M. Ollila, Roger C. Wiens, Adriana Reyes-Newell, Samuel M. Clegg, Maëva Millan, Sarah Stewart Johnson, Ophélie McIntosh, Cyril Szopa, Caroline Freissinet, Yasuhito Sekine, Keisuke Fukushi, Koki Morida, Kosuke Inoue, Hiroshi Sakuma and Elizabeth Rampe
Additional contact information
Armando Azua-Bustos: Centro de Astrobiología (CAB) (CSIC-INTA)
Alberto G. Fairén: Centro de Astrobiología (CAB) (CSIC-INTA)
Carlos González-Silva: Universidad de Tarapacá
Olga Prieto-Ballesteros: Centro de Astrobiología (CAB) (CSIC-INTA)
Daniel Carrizo: Centro de Astrobiología (CAB) (CSIC-INTA)
Laura Sánchez-García: Centro de Astrobiología (CAB) (CSIC-INTA)
Victor Parro: Centro de Astrobiología (CAB) (CSIC-INTA)
Miguel Ángel Fernández-Martínez: Universidad Autónoma de Madrid
Cristina Escudero: Centro de Astrobiología (CAB) (CSIC-INTA)
Victoria Muñoz-Iglesias: Centro de Astrobiología (CAB) (CSIC-INTA)
Maite Fernández-Sampedro: Centro de Astrobiología (CAB) (CSIC-INTA)
Antonio Molina: Centro de Astrobiología (CAB) (CSIC-INTA)
Miriam García Villadangos: Centro de Astrobiología (CAB) (CSIC-INTA)
Mercedes Moreno-Paz: Centro de Astrobiología (CAB) (CSIC-INTA)
Jacek Wierzchos: Museo Nacional de Ciencias Naturales (CSIC)
Carmen Ascaso: Museo Nacional de Ciencias Naturales (CSIC)
Teresa Fornaro: INAF-Astrophysical Observatory of Arcetri
John Robert Brucato: INAF-Astrophysical Observatory of Arcetri
Giovanni Poggiali: INAF-Astrophysical Observatory of Arcetri
Jose Antonio Manrique: Universidad de Valladolid
Marco Veneranda: Universidad de Valladolid
Guillermo López-Reyes: Universidad de Valladolid
Aurelio Sanz-Arranz: Universidad de Valladolid
Fernando Rull: Universidad de Valladolid
Ann M. Ollila: Purdue University, Earth, Atmospheric, and Planetary Sciences
Roger C. Wiens: Purdue University, Earth, Atmospheric, and Planetary Sciences
Adriana Reyes-Newell: Southwest Sciences, Inc. 1570 Pacheco St. Ste. E11
Samuel M. Clegg: Purdue University, Earth, Atmospheric, and Planetary Sciences
Maëva Millan: Georgetown University
Sarah Stewart Johnson: Georgetown University
Ophélie McIntosh: INAF-Astrophysical Observatory of Arcetri
Cyril Szopa: Georgetown University
Caroline Freissinet: Georgetown University
Yasuhito Sekine: Earth-Life Science Institute (ELSI), Tokyo Institute of Technology
Keisuke Fukushi: Kanazawa University
Koki Morida: Kanazawa University
Kosuke Inoue: Kanazawa University
Hiroshi Sakuma: National Institute for Materials Science
Elizabeth Rampe: Astromaterials Research and Exploration Science Division, NASA Johnson Space Center

Nature Communications, 2023, vol. 14, issue 1, 1-14

Abstract: Abstract Identifying unequivocal signs of life on Mars is one of the most important objectives for sending missions to the red planet. Here we report Red Stone, a 163-100 My alluvial fan–fan delta that formed under arid conditions in the Atacama Desert, rich in hematite and mudstones containing clays such as vermiculite and smectites, and therefore geologically analogous to Mars. We show that Red Stone samples display an important number of microorganisms with an unusual high rate of phylogenetic indeterminacy, what we refer to as “dark microbiome”, and a mix of biosignatures from extant and ancient microorganisms that can be barely detected with state-of-the-art laboratory equipment. Our analyses by testbed instruments that are on or will be sent to Mars unveil that although the mineralogy of Red Stone matches that detected by ground-based instruments on the red planet, similarly low levels of organics will be hard, if not impossible to detect in Martian rocks depending on the instrument and technique used. Our results stress the importance in returning samples to Earth for conclusively addressing whether life ever existed on Mars.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-023-36172-1 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36172-1

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-36172-1

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36172-1