Stringent response ensures the timely adaptation of bacterial growth to nutrient downshift
Manlu Zhu () and
Xiongfeng Dai ()
Additional contact information
Manlu Zhu: Central China Normal University
Xiongfeng Dai: Central China Normal University
Nature Communications, 2023, vol. 14, issue 1, 1-15
Abstract:
Abstract Timely adaptation to nutrient downshift is crucial for bacteria to maintain fitness during feast and famine cycle in the natural niche. However, the molecular mechanism that ensures the timely adaption of bacterial growth to nutrient downshift remains poorly understood. Here, we quantitatively investigated the adaptation of Escherichia coli to various kinds of nutrient downshift. We found that relA deficient strain, which is devoid of stringent response, exhibits a significantly longer growth lag than wild type strain during adapting to both amino acid downshift and carbon downshift. Quantitative proteomics show that increased (p)ppGpp level promotes the growth adaption of bacteria to amino acid downshift via triggering the proteome resource re-allocation from ribosome synthesis to amino acid biosynthesis. Such type of proteome re-allocation is significantly delayed in the relA-deficient strain, which underlies its longer lag than wild type strain during amino acid downshift. During carbon downshift, a lack of stringent response in relA deficient strain leads to disruption of the transcription-translation coordination, thus compromising the transcription processivity and further the timely expression of related catabolic operons for utilizing secondary carbon sources. Our studies shed light on the fundamental strategy of bacteria to maintain fitness under nutrient-fluctuating environments.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-023-36254-0 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36254-0
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-36254-0
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().