EconPapers    
Economics at your fingertips  
 

Ultrathin positively charged electrode skin for durable anion-intercalation battery chemistries

Davood Sabaghi, Zhiyong Wang, Preeti Bhauriyal, Qiongqiong Lu, Ahiud Morag, Daria Mikhailovia, Payam Hashemi, Dongqi Li, Christof Neumann, Zhongquan Liao, Anna Maria Dominic, Ali Shaygan Nia, Renhao Dong (), Ehrenfried Zschech, Andrey Turchanin, Thomas Heine, Minghao Yu () and Xinliang Feng ()
Additional contact information
Davood Sabaghi: Technische Universität Dresden
Zhiyong Wang: Technische Universität Dresden
Preeti Bhauriyal: Technische Universität Dresden
Qiongqiong Lu: Leibniz Institute for Solid State and Materials Research (IFW)
Ahiud Morag: Technische Universität Dresden
Daria Mikhailovia: Leibniz Institute for Solid State and Materials Research (IFW)
Payam Hashemi: Technische Universität Dresden
Dongqi Li: Technische Universität Dresden
Christof Neumann: Friedrich Schiller University Jena
Zhongquan Liao: Fraunhofer Institute for Ceramic Technologies and Systems (IKTS)
Anna Maria Dominic: Technische Universität Dresden
Ali Shaygan Nia: Technische Universität Dresden
Renhao Dong: Technische Universität Dresden
Ehrenfried Zschech: University of Warsaw
Andrey Turchanin: Friedrich Schiller University Jena
Thomas Heine: Technische Universität Dresden
Minghao Yu: Technische Universität Dresden
Xinliang Feng: Technische Universität Dresden

Nature Communications, 2023, vol. 14, issue 1, 1-11

Abstract: Abstract The anion-intercalation chemistries of graphite have the potential to construct batteries with promising energy and power breakthroughs. Here, we report the use of an ultrathin, positively charged two-dimensional poly(pyridinium salt) membrane (C2DP) as the graphite electrode skin to overcome the critical durability problem. Large-area C2DP enables the conformal coating on the graphite electrode, remarkably alleviating the electrolyte. Meanwhile, the dense face-on oriented single crystals with ultrathin thickness and cationic backbones allow C2DP with high anion-transport capability and selectivity. Such desirable anion-transport properties of C2DP prevent the cation/solvent co-intercalation into the graphite electrode and suppress the consequent structure collapse. An impressive PF6−-intercalation durability is demonstrated for the C2DP-covered graphite electrode, with capacity retention of 92.8% after 1000 cycles at 1 C and Coulombic efficiencies of > 99%. The feasibility of constructing artificial ion-regulating electrode skins with precisely customized two-dimensional polymers offers viable means to promote problematic battery chemistries.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-36384-5 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36384-5

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-36384-5

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36384-5