EconPapers    
Economics at your fingertips  
 

CLIC and membrane wound repair pathways enable pandemic norovirus entry and infection

B. Vijayalakshmi Ayyar, Khalil Ettayebi, Wilhelm Salmen, Umesh C. Karandikar, Frederick H. Neill, Victoria R. Tenge, Sue E. Crawford, Erhard Bieberich, B. V. Venkataram Prasad, Robert L. Atmar and Mary K. Estes ()
Additional contact information
B. Vijayalakshmi Ayyar: Baylor College of Medicine
Khalil Ettayebi: Baylor College of Medicine
Wilhelm Salmen: Baylor College of Medicine
Umesh C. Karandikar: Baylor College of Medicine
Frederick H. Neill: Baylor College of Medicine
Victoria R. Tenge: Baylor College of Medicine
Sue E. Crawford: Baylor College of Medicine
Erhard Bieberich: University of Kentucky, Lexington
B. V. Venkataram Prasad: Baylor College of Medicine
Robert L. Atmar: Baylor College of Medicine
Mary K. Estes: Baylor College of Medicine

Nature Communications, 2023, vol. 14, issue 1, 1-14

Abstract: Abstract Globally, most cases of gastroenteritis are caused by pandemic GII.4 human norovirus (HuNoV) strains with no approved therapies or vaccines available. The cellular pathways that these strains exploit for cell entry and internalization are unknown. Here, using nontransformed human jejunal enteroids (HIEs) that recapitulate the physiology of the gastrointestinal tract, we show that infectious GII.4 virions and virus-like particles are endocytosed using a unique combination of endosomal acidification-dependent clathrin-independent carriers (CLIC), acid sphingomyelinase (ASM)-mediated lysosomal exocytosis, and membrane wound repair pathways. We found that besides the known interaction of the viral capsid Protruding (P) domain with host glycans, the Shell (S) domain interacts with both galectin-3 (gal-3) and apoptosis-linked gene 2-interacting protein X (ALIX), to orchestrate GII.4 cell entry. Recognition of the viral and cellular determinants regulating HuNoV entry provides insight into the infection process of a non-enveloped virus highlighting unique pathways and targets for developing effective therapeutics.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-36398-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36398-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-36398-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36398-z