EconPapers    
Economics at your fingertips  
 

Classification of time-reversal-invariant crystals with gauge structures

Z. Y. Chen, Zheng Zhang, Shengyuan A. Yang and Y. X. Zhao ()
Additional contact information
Z. Y. Chen: Nanjing University
Zheng Zhang: Nanjing University
Shengyuan A. Yang: Singapore University of Technology and Design
Y. X. Zhao: Nanjing University

Nature Communications, 2023, vol. 14, issue 1, 1-9

Abstract: Abstract A peculiar feature of quantum states is that they may embody so-called projective representations of symmetries rather than ordinary representations. Projective representations of space groups-the defining symmetry of crystals-remain largely unexplored. Despite recent advances in artificial crystals, whose intrinsic gauge structures necessarily require a projective description, a unified theory is yet to be established. Here, we establish such a unified theory by exhaustively classifying and representing all 458 projective symmetry algebras of time-reversal-invariant crystals from 17 wallpaper groups in two dimensions-189 of which are algebraically non-equivalent. We discover three physical signatures resulting from projective symmetry algebras, including the shift of high-symmetry momenta, an enforced nontrivial Zak phase, and a spinless eight-fold nodal point. Our work offers a theoretical foundation for the field of artificial crystals and opens the door to a wealth of topological states and phenomena beyond the existing paradigms.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-023-36447-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36447-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-36447-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36447-7