Transgenic NADH dehydrogenase restores oxygen regulation of breathing in mitochondrial complex I-deficient mice
Blanca Jiménez-Gómez,
Patricia Ortega-Sáenz,
Lin Gao,
Patricia González-Rodríguez,
Paula García-Flores,
Navdeep Chandel and
José López-Barneo ()
Additional contact information
Blanca Jiménez-Gómez: Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla
Patricia Ortega-Sáenz: Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla
Lin Gao: Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla
Patricia González-Rodríguez: Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla
Paula García-Flores: Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla
Navdeep Chandel: Northwestern University
José López-Barneo: Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla
Nature Communications, 2023, vol. 14, issue 1, 1-14
Abstract:
Abstract The hypoxic ventilatory response (HVR) is a life-saving reflex, triggered by the activation of chemoreceptor glomus cells in the carotid body (CB) connected with the brainstem respiratory center. The molecular mechanisms underlying glomus cell acute oxygen (O2) sensing are unclear. Genetic disruption of mitochondrial complex I (MCI) selectively abolishes the HVR and glomus cell responsiveness to hypoxia. However, it is unknown what functions of MCI (metabolic, proton transport, or signaling) are essential for O2 sensing. Here we show that transgenic mitochondrial expression of NDI1, a single-molecule yeast NADH/quinone oxidoreductase that does not directly contribute to proton pumping, fully recovers the HVR and glomus cell sensitivity to hypoxia in MCI-deficient mice. Therefore, maintenance of mitochondrial NADH dehydrogenase activity and the electron transport chain are absolutely necessary for O2-dependent regulation of breathing. NDI1 expression also rescues other systemic defects caused by MCI deficiency. These data explain the role of MCI in acute O2 sensing by arterial chemoreceptors and demonstrate the optimal recovery of complex organismal functions by gene therapy.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-023-36894-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36894-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-36894-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().