Optical control of PIEZO1 channels
Francisco Andrés Peralta,
Mélaine Balcon,
Adeline Martz,
Deniza Biljali,
Federico Cevoli,
Benoit Arnould,
Antoine Taly,
Thierry Chataigneau and
Thomas Grutter ()
Additional contact information
Francisco Andrés Peralta: Université de Strasbourg, Centre National de la Recherche Scientifique, Faculté de Pharmacie
Mélaine Balcon: Université de Strasbourg, Centre National de la Recherche Scientifique, Faculté de Pharmacie
Adeline Martz: Université de Strasbourg, Centre National de la Recherche Scientifique, Faculté de Pharmacie
Deniza Biljali: Université de Strasbourg, Centre National de la Recherche Scientifique, Faculté de Pharmacie
Federico Cevoli: Université de Strasbourg, Centre National de la Recherche Scientifique, Faculté de Pharmacie
Benoit Arnould: Université de Strasbourg, Centre National de la Recherche Scientifique, Faculté de Pharmacie
Antoine Taly: Université Paris Cité
Thierry Chataigneau: Université de Strasbourg, Centre National de la Recherche Scientifique, Faculté de Pharmacie
Thomas Grutter: Université de Strasbourg, Centre National de la Recherche Scientifique, Faculté de Pharmacie
Nature Communications, 2023, vol. 14, issue 1, 1-13
Abstract:
Abstract PIEZO proteins are unusually large, mechanically-activated trimeric ion channels. The central pore features structural similarities with the pore of other trimeric ion channels, including purinergic P2X receptors, for which optical control of channel gating has been previously achieved with photoswitchable azobenzenes. Extension of these chemical optogenetics methods to mechanically-activated ion channels would provide tools for specific manipulation of pore activity alternative to non-specific mechanical stimulations. Here we report a light-gated mouse PIEZO1 channel, in which an azobenzene-based photoswitch covalently tethered to an engineered cysteine, Y2464C, localized at the extracellular apex of the transmembrane helix 38, rapidly triggers channel gating upon 365-nm-light irradiation. We provide evidence that this light-gated channel recapitulates mechanically-activated PIEZO1 functional properties, and show that light-induced molecular motions are similar to those evoked mechanically. These results push the limits of azobenzene-based methods to unusually large ion channels and provide a simple stimulation means to specifically interrogate PIEZO1 function.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-36931-0 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36931-0
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-36931-0
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().