EconPapers    
Economics at your fingertips  
 

Engineering zero modes in transformable mechanical metamaterials

Zhou Hu, Zhibo Wei, Kun Wang, Yan Chen (), Rui Zhu (), Guoliang Huang and Gengkai Hu
Additional contact information
Zhou Hu: Beijing Institute of Technology
Zhibo Wei: Tianjin University
Kun Wang: Beijing Institute of Technology
Yan Chen: Tianjin University
Rui Zhu: Beijing Institute of Technology
Guoliang Huang: University of Missouri
Gengkai Hu: Beijing Institute of Technology

Nature Communications, 2023, vol. 14, issue 1, 1-9

Abstract: Abstract In the field of flexible metamaterial design, harnessing zero modes plays a key part in enabling reconfigurable elastic properties of the metamaterial with unconventional characteristics. However, only quantitative enhancement of certain properties succeeds in most cases rather than qualitative transformation of the metamaterials’ states or/and functionalities, due to the lack of systematic designs on the corresponding zero modes. Here, we propose a 3D metamaterial with engineered zero modes, and experimentally demonstrate its transformable static and dynamic properties. All seven types of extremal metamaterials ranging from null-mode (solid state) to hexa-mode (near-gaseous state) are reported to be reversibly transformed from one state to another, which is verified by the 3D-printed Thermoplastic Polyurethanes prototypes. Tunable wave manipulations are further investigated in 1D-, 2D- and 3D-systems. Our work sheds lights on the design of flexible mechanical metamaterials, which can be potentially extended from the mechanical to the electro-magnetite, the thermal or other types.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-36975-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36975-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-36975-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36975-2