EconPapers    
Economics at your fingertips  
 

Synergy of cations in high entropy oxide lithium ion battery anode

Kai Wang, Weibo Hua, Xiaohui Huang, David Stenzel, Junbo Wang, Ziming Ding, Yanyan Cui, Qingsong Wang, Helmut Ehrenberg, Ben Breitung, Christian Kübel () and Xiaoke Mu ()
Additional contact information
Kai Wang: Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1
Weibo Hua: Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1
Xiaohui Huang: Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1
David Stenzel: Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1
Junbo Wang: Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1
Ziming Ding: Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1
Yanyan Cui: Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1
Qingsong Wang: Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1
Helmut Ehrenberg: Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1
Ben Breitung: Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1
Christian Kübel: Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1
Xiaoke Mu: Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1

Nature Communications, 2023, vol. 14, issue 1, 1-9

Abstract: Abstract High entropy oxides (HEOs) with chemically disordered multi-cation structure attract intensive interest as negative electrode materials for battery applications. The outstanding electrochemical performance has been attributed to the high-entropy stabilization and the so-called ‘cocktail effect’. However, the configurational entropy of the HEO, which is thermodynamically only metastable at room-temperature, is insufficient to drive the structural reversibility during conversion-type battery reaction, and the ‘cocktail effect’ has not been explained thus far. This work unveils the multi-cations synergy of the HEO Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O at atomic and nanoscale during electrochemical reaction and explains the ‘cocktail effect’. The more electronegative elements form an electrochemically inert 3-dimensional metallic nano-network enabling electron transport. The electrochemical inactive cation stabilizes an oxide nanophase, which is semi-coherent with the metallic phase and accommodates Li+ ions. This self-assembled nanostructure enables stable cycling of micron-sized particles, which bypasses the need for nanoscale pre-modification required for conventional metal oxides in battery applications. This demonstrates elemental diversity is the key for optimizing multi-cation electrode materials.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-37034-6 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37034-6

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-37034-6

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37034-6