EconPapers    
Economics at your fingertips  
 

Bioelectrocatalysis with a palladium membrane reactor

Aiko Kurimoto, Seyed A. Nasseri, Camden Hunt, Mike Rooney, David J. Dvorak, Natalie E. LeSage, Ryan P. Jansonius, Stephen G. Withers and Curtis P. Berlinguette ()
Additional contact information
Aiko Kurimoto: The University of British Columbia
Seyed A. Nasseri: The University of British Columbia
Camden Hunt: The University of British Columbia
Mike Rooney: The University of British Columbia
David J. Dvorak: The University of British Columbia
Natalie E. LeSage: The University of British Columbia
Ryan P. Jansonius: The University of British Columbia
Stephen G. Withers: The University of British Columbia
Curtis P. Berlinguette: The University of British Columbia

Nature Communications, 2023, vol. 14, issue 1, 1-10

Abstract: Abstract Enzyme catalysis is used to generate approximately 50,000 tons of value-added chemical products per year. Nearly a quarter of this production requires a stoichiometric cofactor such as NAD+/NADH. Given that NADH is expensive, it would be beneficial to regenerate it in a way that does not interfere with the enzymatic reaction. Water electrolysis could provide the proton and electron equivalent necessary to electrocatalytically convert NAD+ to NADH. However, this form of electrocatalytic NADH regeneration is challenged by the formation of inactive NAD2 dimers, the use of high overpotentials or mediators, and the long-term electrochemical instability of the enzyme during electrolysis. Here, we show a means of overcoming these challenges by using a bioelectrocatalytic palladium membrane reactor for electrochemical NADH regeneration from NAD+. This achievement is possible because the membrane reactor regenerates NADH through reaction of hydride with NAD+ in a compartment separated from the electrolysis compartment by a hydrogen-permselective Pd membrane. This separation of the enzymatic and electrolytic processes bypasses radical-induced NAD+ degradation and enables the operator to optimize conditions for the enzymatic reaction independent of the water electrolysis. This architecture, which mechanistic studies reveal utilizes hydride sourced from water, provides an opportunity for enzyme catalysis to be driven by clean electricity where the major waste product is oxygen gas.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-37257-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37257-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-37257-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37257-7