EconPapers    
Economics at your fingertips  
 

Unintended cation crossover influences CO2 reduction selectivity in Cu-based zero-gap electrolysers

Gumaa A. El-Nagar (), Flora Haun, Siddharth Gupta, Sasho Stojkovikj and Matthew T. Mayer ()
Additional contact information
Gumaa A. El-Nagar: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Flora Haun: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Siddharth Gupta: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Sasho Stojkovikj: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Matthew T. Mayer: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Nature Communications, 2023, vol. 14, issue 1, 1-10

Abstract: Abstract Membrane electrode assemblies enable CO2 electrolysis at industrially relevant rates, yet their operational stability is often limited by formation of solid precipitates in the cathode pores, triggered by cation crossover from the anolyte due to imperfect ion exclusion by anion exchange membranes. Here we show that anolyte concentration affects the degree of cation movement through the membranes, and this substantially influences the behaviors of copper catalysts in catholyte-free CO2 electrolysers. Systematic variation of the anolyte (KOH or KHCO3) ionic strength produced a distinct switch in selectivity between either predominantly CO or C2+ products (mainly C2H4) which closely correlated with the quantity of alkali metal cation (K+) crossover, suggesting cations play a key role in C-C coupling reaction pathways even in cells without discrete liquid catholytes. Operando X-ray absorption and quasi in situ X-ray photoelectron spectroscopy revealed that the Cu surface speciation showed a strong dependence on the anolyte concentration, wherein dilute anolytes resulted in a mixture of Cu+ and Cu0 surface species, while concentrated anolytes led to exclusively Cu0 under similar testing conditions. These results show that even in catholyte-free cells, cation effects (including unintentional ones) significantly influence reaction pathways, important to consider in future development of catalysts and devices.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-37520-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37520-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-37520-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37520-x