EconPapers    
Economics at your fingertips  
 

New constraints on Cenozoic subduction between India and Tibet

Liang Liu (), Lijun Liu (), Jason. P. Morgan, Yi-Gang Xu and Ling Chen
Additional contact information
Liang Liu: Chinese Academy of Science
Lijun Liu: University of Illinois at Urbana-Champaign
Jason. P. Morgan: Southern University of Science and Technology
Yi-Gang Xu: Chinese Academy of Science
Ling Chen: Chinese Academy of Sciences

Nature Communications, 2023, vol. 14, issue 1, 1-14

Abstract: Abstract The type of lithosphere subducted between India and Tibet since the Paleocene remains controversial; it has been suggested to be either entirely continental, oceanic, or a mixture of the two. As the subduction history of this lost lithosphere strongly shaped Tibetan intraplate tectonism, we attempt to further constrain its nature and density structure with numerical models that aim to reproduce the observed history of magmatism and crustal thickening in addition to present-day plateau properties between 83°E and 88°E. By matching time-evolving geological patterns, here we show that Tibetan tectonism away from the Himalayan syntaxis is consistent with the initial indentation of a craton-like terrane at 55 ± 5 Ma, followed by a buoyant tectonic plate with a thin crust, e.g., a broad continental margin (Himalandia). This new geodynamic scenario can explain the seemingly contradictory observations that had led to competing hypotheses like the subduction of Greater India versus largely oceanic subduction prior to Indian indentation.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-023-37615-5 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37615-5

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-37615-5

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37615-5