EconPapers    
Economics at your fingertips  
 

Supercritical fluids behave as complex networks

Filip Simeski and Matthias Ihme ()
Additional contact information
Filip Simeski: Stanford University
Matthias Ihme: Stanford University

Nature Communications, 2023, vol. 14, issue 1, 1-10

Abstract: Abstract Supercritical fluids play a key role in environmental, geological, and celestial processes, and are of great importance to many scientific and engineering applications. They exhibit strong variations in thermodynamic response functions, which has been hypothesized to stem from the microstructural behavior. However, a direct connection between thermodynamic conditions and the microstructural behavior, as described by molecular clusters, remains an outstanding issue. By utilizing a first-principles-based criterion and self-similarity analysis, we identify energetically localized molecular clusters whose size distribution and connectivity exhibit self-similarity in the extended supercritical phase space. We show that the structural response of these clusters follows a complex network behavior whose dynamics arises from the energetics of isotropic molecular interactions. Furthermore, we demonstrate that a hidden variable network model can accurately describe the structural and dynamical response of supercritical fluids. These results highlight the need for constitutive models and provide a basis to relate the fluid microstructure to thermodynamic response functions.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-37645-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37645-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-37645-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37645-z