Aerosol breezes drive cloud and precipitation increases
Gabrielle R. Leung () and
Susan C. van den Heever
Additional contact information
Gabrielle R. Leung: Colorado State University
Susan C. van den Heever: Colorado State University
Nature Communications, 2023, vol. 14, issue 1, 1-8
Abstract:
Abstract Aerosol-cloud interactions are a major source of uncertainty in weather and climate models. These interactions and associated precipitation feedbacks are modulated by spatial distributions of aerosols on global and regional scales. Aerosols also vary on mesoscales, including around wildfires, industrial regions, and cities, but the impacts of variability on these scales are understudied. Here, we first present observations of covarying mesoscale aerosol and cloud distributions on the mesoscale. Then, using a high-resolution process model, we show that horizontal aerosol gradients of order 100 km drive a thermally-direct circulation we call an “aerosol breeze”. We find that aerosol breezes support initiation of clouds and precipitation over the low-aerosol portion of the gradient while suppressing their development on the high-aerosol end. Aerosol gradients also enhance domain-wide cloudiness and precipitation, compared with homogenous distributions of the same aerosol mass, leading to potential biases in models that do not adequately represent this mesoscale aerosol heterogeneity.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-37722-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37722-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-37722-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().