EconPapers    
Economics at your fingertips  
 

Dynamic machine vision with retinomorphic photomemristor-reservoir computing

Hongwei Tan () and Sebastiaan van Dijken ()
Additional contact information
Hongwei Tan: Aalto University School of Science
Sebastiaan van Dijken: Aalto University School of Science

Nature Communications, 2023, vol. 14, issue 1, 1-9

Abstract: Abstract Dynamic machine vision requires recognizing the past and predicting the future of a moving object based on present vision. Current machine vision systems accomplish this by processing numerous image frames or using complex algorithms. Here, we report motion recognition and prediction in recurrent photomemristor networks. In our system, a retinomorphic photomemristor array, working as dynamic vision reservoir, embeds past motion frames as hidden states into the present frame through inherent dynamic memory. The informative present frame facilitates accurate recognition of past and prediction of future motions with machine learning algorithms. This in-sensor motion processing capability eliminates redundant data flows and promotes real-time perception of moving objects for dynamic machine vision.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-37886-y Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37886-y

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-37886-y

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37886-y