EconPapers    
Economics at your fingertips  
 

Condensation and asymmetric amplification of chirality in achiral molecules adsorbed on an achiral surface

Huiru Liu, Heping Li, Yu He, Peng Cheng, Yi-Qi Zhang, Baojie Feng, Hui Li (), Kehui Wu () and Lan Chen ()
Additional contact information
Huiru Liu: Chinese Academy of Sciences
Heping Li: Beijing University of Chemical Technology
Yu He: Chinese Academy of Sciences
Peng Cheng: Chinese Academy of Sciences
Yi-Qi Zhang: Chinese Academy of Sciences
Baojie Feng: Chinese Academy of Sciences
Hui Li: Beijing University of Chemical Technology
Kehui Wu: Chinese Academy of Sciences
Lan Chen: Chinese Academy of Sciences

Nature Communications, 2023, vol. 14, issue 1, 1-10

Abstract: Abstract The origin of homochirality in nature is an important but open question. Here, we demonstrate a simple organizational chiral system constructed by achiral carbon monoxide (CO) molecules adsorbed on an achiral Au(111) substrate. Combining scanning tunneling microscope (STM) measurements with density-functional-theory (DFT) calculations, two dissymmetric cluster phases consisting of chiral CO heptamers are revealed. By applied high bias voltage, the stable racemic cluster phase can be transformed into a metastable uniform phase consisting of CO monomers. Further, during the recondensation of a cluster phase after lowering down bias voltage, an enantiomeric excess and its chiral amplification occur, resulting in a homochirality. Such asymmetry amplification is found to be both kinetically feasible and thermodynamically favorable. Our observations provide insight into the physicochemical origin of homochirality through surface adsorption and suggest a general phenomenon that can influence enantioselective chemical processes such as chiral separations and heterogeneous asymmetric catalysis.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-023-37904-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37904-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-37904-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37904-z