EconPapers    
Economics at your fingertips  
 

Insights into solvent and surface charge effects on Volmer step kinetics on Pt (111)

Jon C. Wilson, Stavros Caratzoulas (), Dionisios G. Vlachos () and Yushan Yan ()
Additional contact information
Jon C. Wilson: University of Delaware
Stavros Caratzoulas: University of Delaware
Dionisios G. Vlachos: University of Delaware
Yushan Yan: University of Delaware

Nature Communications, 2023, vol. 14, issue 1, 1-9

Abstract: Abstract The mechanism of pH-dependent hydrogen oxidation and evolution kinetics is still a matter of significant debate. To make progress, we study the Volmer step kinetics on platinum (111) using classical molecular dynamics simulations with an embedded Anderson-Newns Hamiltonian for the redox process and constant potential electrodes. We investigate how negative electrode electrostatic potential affects Volmer step kinetics. We find that the redox solvent reorganization energy is insensitive to changes in interfacial field strength. The negatively charged surface attracts adsorbed H as well as H+, increasing hydrogen binding energy, but also trapping H+ in the double layer. While more negative electrostatic potential in the double layer accelerates the oxidation charge transfer, it becomes difficult for the proton to move to the bulk. Conversely, reduction becomes more difficult because the transition state occurs farther from equilibrium solvation polarization. Our results help to clarify how the charged surface plays a role in hydrogen electrocatalysis kinetics.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-023-37935-6 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37935-6

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-37935-6

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37935-6