EconPapers    
Economics at your fingertips  
 

Single-step retrosynthesis prediction by leveraging commonly preserved substructures

Lei Fang (), Junren Li, Ming Zhao, Li Tan and Jian-Guang Lou
Additional contact information
Lei Fang: Microsoft Research Asia
Junren Li: Peking University
Ming Zhao: Waseda University
Li Tan: Mincui Therapeutix
Jian-Guang Lou: Microsoft Research Asia

Nature Communications, 2023, vol. 14, issue 1, 1-14

Abstract: Abstract Retrosynthesis analysis is an important task in organic chemistry with numerous industrial applications. Previously, machine learning approaches employing natural language processing techniques achieved promising results in this task by first representing reactant molecules as strings and subsequently predicting reactant molecules using text generation or machine translation models. Chemists cannot readily derive useful insights from traditional approaches that rely largely on atom-level decoding in the string representations, because human experts tend to interpret reactions by analyzing substructures that comprise a molecule. It is well-established that some substructures are stable and remain unchanged in reactions. In this paper, we developed a substructure-level decoding model, where commonly preserved portions of product molecules were automatically extracted with a fully data-driven approach. Our model achieves improvement over previously reported models, and we demonstrate that its performance can be boosted further by enhancing the accuracy of these substructures. Analyzing substructures extracted from our machine learning model can provide human experts with additional insights to assist decision-making in retrosynthesis analysis.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-37969-w Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37969-w

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-37969-w

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37969-w