Complex computation from developmental priors
Dániel L. Barabási (),
Taliesin Beynon,
Ádám Katona and
Nicolas Perez-Nieves
Additional contact information
Dániel L. Barabási: Harvard University
Taliesin Beynon: Wolfram Physics Project
Ádám Katona: Imperial College London
Nicolas Perez-Nieves: University of York
Nature Communications, 2023, vol. 14, issue 1, 1-8
Abstract:
Abstract Machine learning (ML) models have long overlooked innateness: how strong pressures for survival lead to the encoding of complex behaviors in the nascent wiring of a brain. Here, we derive a neurodevelopmental encoding of artificial neural networks that considers the weight matrix of a neural network to be emergent from well-studied rules of neuronal compatibility. Rather than updating the network’s weights directly, we improve task fitness by updating the neurons’ wiring rules, thereby mirroring evolutionary selection on brain development. We find that our model (1) provides sufficient representational power for high accuracy on ML benchmarks while also compressing parameter count, and (2) can act as a regularizer, selecting simple circuits that provide stable and adaptive performance on metalearning tasks. In summary, by introducing neurodevelopmental considerations into ML frameworks, we not only model the emergence of innate behaviors, but also define a discovery process for structures that promote complex computations.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-37980-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37980-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-37980-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().