Strong ferromagnetism of g-C3N4 achieved by atomic manipulation
Lina Du,
Bo Gao,
Song Xu and
Qun Xu ()
Additional contact information
Lina Du: Zhengzhou University
Bo Gao: Zhengzhou University
Song Xu: Zhengzhou University
Qun Xu: Zhengzhou University
Nature Communications, 2023, vol. 14, issue 1, 1-8
Abstract:
Abstract Two-dimensional (2D) metal-free ferromagnetic materials are ideal candidates to fabricate next-generation memory and logic devices, but optimization of their ferromagnetism at atomic-scale remains challenging. Theoretically, optimization of ferromagnetism could be achieved by inducing long-range magnetic sequence, which requires short-range exchange interactions. In this work, we propose a strategy to enhance the ferromagnetism of 2D graphite carbon nitride (g-C3N4), which is facilitating the short-range exchange interaction by introducing in-planar boron bridges. As expected, the ferromagnetism of g-C3N4 was significantly enhanced after the introduction of boron bridges, consistent with theoretical calculations. Overall, boosting ferromagnetism of 2D materials by introducing bridging groups is emphasized, which could be applied to manipulate the magnetism of other materials.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-38012-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38012-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-38012-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().