EconPapers    
Economics at your fingertips  
 

Unifying speed limit, thermodynamic uncertainty relation and Heisenberg principle via bulk-boundary correspondence

Yoshihiko Hasegawa ()
Additional contact information
Yoshihiko Hasegawa: The University of Tokyo

Nature Communications, 2023, vol. 14, issue 1, 1-10

Abstract: Abstract The bulk-boundary correspondence provides a guiding principle for tackling strongly correlated and coupled systems. In the present work, we apply the concept of the bulk-boundary correspondence to thermodynamic bounds described by classical and quantum Markov processes. Using the continuous matrix product state, we convert a Markov process to a quantum field, such that jump events in the Markov process are represented by the creation of particles in the quantum field. Introducing the time evolution of the continuous matrix product state, we apply the geometric bound to its time evolution. We find that the geometric bound reduces to the speed limit relation when we represent the bound in terms of the system quantity, whereas the same bound reduces to the thermodynamic uncertainty relation when expressed based on quantities of the quantum field. Our results show that the speed limits and thermodynamic uncertainty relations are two aspects of the same geometric bound.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-38074-8 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38074-8

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-38074-8

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38074-8