EconPapers    
Economics at your fingertips  
 

Preparing high-concentration individualized carbon nanotubes for industrial separation of multiple single-chirality species

Dehua Yang, Linhai Li, Xiao Li, Wei Xi, Yuejuan Zhang, Yumin Liu, Xiaojun Wei, Weiya Zhou, Fei Wei, Sishen Xie and Huaping Liu ()
Additional contact information
Dehua Yang: Chinese Academy of Sciences
Linhai Li: Chinese Academy of Sciences
Xiao Li: Chinese Academy of Sciences
Wei Xi: Chinese Academy of Sciences
Yuejuan Zhang: Chinese Academy of Sciences
Yumin Liu: Chinese Academy of Sciences
Xiaojun Wei: Chinese Academy of Sciences
Weiya Zhou: Chinese Academy of Sciences
Fei Wei: Tsinghua University
Sishen Xie: Chinese Academy of Sciences
Huaping Liu: Chinese Academy of Sciences

Nature Communications, 2023, vol. 14, issue 1, 1-12

Abstract: Abstract Industrial production of single-chirality carbon nanotubes is critical for their applications in high-speed and low-power nanoelectronic devices, but both their growth and separation have been major challenges. Here, we report a method for industrial separation of single-chirality carbon nanotubes from a variety of raw materials with gel chromatography by increasing the concentration of carbon nanotube solution. The high-concentration individualized carbon nanotube solution is prepared by ultrasonic dispersion followed by centrifugation and ultrasonic redispersion. With this technique, the concentration of the as-prepared individualized carbon nanotubes is increased from about 0.19 mg/mL to approximately 1 mg/mL, and the separation yield of multiple single-chirality species is increased by approximately six times to the milligram scale in one separation run with gel chromatography. When the dispersion technique is applied to an inexpensive hybrid of graphene and carbon nanotubes with a wide diameter range of 0.8–2.0 nm, and the separation yield of single-chirality species is increased by more than an order of magnitude to the sub-milligram scale. Moreover, with present separation technique, the environmental impact and cost of producing single-chirality species are greatly reduced. We anticipate that this method promotes industrial production and practical applications of single-chirality carbon nanotubes in carbon-based integration circuits.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-023-38133-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38133-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-38133-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38133-0