Dispersion-engineered metasurfaces reaching broadband 90% relative diffraction efficiency
Wei Ting Chen,
Joon-Suh Park,
Justin Marchioni,
Sophia Millay,
Kerolos M. A. Yousef and
Federico Capasso ()
Additional contact information
Wei Ting Chen: Harvard University
Joon-Suh Park: Harvard University
Justin Marchioni: Harvard University
Sophia Millay: Harvard University
Kerolos M. A. Yousef: Harvard University
Federico Capasso: Harvard University
Nature Communications, 2023, vol. 14, issue 1, 1-9
Abstract:
Abstract Dispersion results from the variation of index of refraction as well as electric field confinement in sub-wavelength structures. It usually results in efficiency decrease in metasurface components leading to troublesome scattering into unwanted directions. In this letter, by dispersion engineering, we report a set of eight nanostructures whose dispersion properties are nearly identical to each other while being capable of providing 0 to 2π full-phase coverage. Our nanostructure set enables broadband and polarization-insensitive metasurface components reaching 90% relative diffraction efficiency (normalized to the power of transmitted light) from 450 nm to 700 nm in wavelength. Relative diffraction efficiency is important at a system level – in addition to diffraction efficiency (normalized to the power of incident light) – as it considers only the transmitted optical power that can affect the signal to noise ratio. We first illustrate our design principle by a chromatic dispersion-engineered metasurface grating, then show that other metasurface components such as chromatic metalenses can also be implemented by the same set of nanostructures with significantly improved relative diffraction efficiency.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-023-38185-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38185-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-38185-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().