EconPapers    
Economics at your fingertips  
 

A semiconductor-electrocatalyst nano interface constructed for successive photoelectrochemical water oxidation

Zilong Wu, Xiangyu Liu, Haijing Li, Zhiyi Sun, Maosheng Cao, Zezhou Li, Chaohe Fang, Jihan Zhou, Chuanbao Cao, Juncai Dong (), Shenlong Zhao () and Zhuo Chen ()
Additional contact information
Zilong Wu: Beijing Institute of Technology
Xiangyu Liu: Beijing Institute of Technology
Haijing Li: Institute of High Energy Physics, Chinese Academy of Sciences
Zhiyi Sun: Beijing Institute of Technology
Maosheng Cao: Beijing Institute of Technology
Zezhou Li: Peking University
Chaohe Fang: CNPC Research Institute of Petroleum Exploration & Development
Jihan Zhou: Peking University
Chuanbao Cao: Beijing Institute of Technology
Juncai Dong: Institute of High Energy Physics, Chinese Academy of Sciences
Shenlong Zhao: The University of Sydney
Zhuo Chen: Beijing Institute of Technology

Nature Communications, 2023, vol. 14, issue 1, 1-9

Abstract: Abstract Photoelectrochemical water splitting has long been considered an ideal approach to producing green hydrogen by utilizing solar energy. However, the limited photocurrents and large overpotentials of the anodes seriously impede large-scale application of this technology. Here, we use an interfacial engineering strategy to construct a nanostructural photoelectrochemical catalyst by incorporating a semiconductor CdS/CdSe-MoS2 and NiFe layered double hydroxide for the oxygen evolution reaction. Impressively, the as-prepared photoelectrode requires an low potential of 1.001 V vs. reversible hydrogen electrode for a photocurrent density of 10 mA cm−2, and this is 228 mV lower than the theoretical water splitting potential (1.229 vs. reversible hydrogen electrode). Additionally, the generated current density (15 mA cm−2) of the photoelectrode at a given overpotential of 0.2 V remains at 95% after long-term testing (100 h). Operando X-ray absorption spectroscopy revealed that the formation of highly oxidized Ni species under illumination provides large photocurrent gains. This finding opens an avenue for designing high-efficiency photoelectrochemical catalysts for successive water splitting.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-023-38285-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38285-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-38285-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38285-z