EconPapers    
Economics at your fingertips  
 

Ni-catalyzed mild hydrogenolysis and oxidations of C–O bonds via carbonate redox tags

Georgios Toupalas, Loélie Ribadeau-Dumas and Bill Morandi ()
Additional contact information
Georgios Toupalas: ETH Zurich
Loélie Ribadeau-Dumas: ETH Zurich
Bill Morandi: ETH Zurich

Nature Communications, 2023, vol. 14, issue 1, 1-10

Abstract: Abstract Oxygenated molecules are omnipresent in natural as well as artificial settings making the redox transformation of the present C–O bonds a central tool for their processing. However, the required (super)stoichiometric redox agents which traditionally include highly reactive and hazardous reagents pose multiple practical challenges including process safety hazards or special waste management requirements. Here, we report a mild Ni-catalyzed fragmentation strategy based on carbonate redox tags for redox transformations of oxygenated hydrocarbons in the absence of any external redox equivalents or other additives. The purely catalytic process enables the hydrogenolysis of strong C(sp2)–O bonds including that of enol carbonates as well as the catalytic oxidation of C–O bonds under mild conditions down to room temperature. Additionally, we investigated the underlying mechanism and showcased the benefits of carbonate redox tags in multiple applications. More broadly, the work herein demonstrates the potential of redox tags for organic synthesis.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-023-38305-y Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38305-y

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-38305-y

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38305-y