EconPapers    
Economics at your fingertips  
 

Conjugated cross-linked phosphine as broadband light or sunlight-driven photocatalyst for large-scale atom transfer radical polymerization

Wei-Wei Fang, Gui-Yu Yang, Zi-Hui Fan, Zi-Chao Chen, Xun-Liang Hu, Zhen Zhan, Irshad Hussain, Yang Lu, Tao He () and Bi-En Tan ()
Additional contact information
Wei-Wei Fang: Hefei University of Technology
Gui-Yu Yang: Hefei University of Technology
Zi-Hui Fan: Hefei University of Technology
Zi-Chao Chen: Hefei University of Technology
Xun-Liang Hu: Huazhong University of Science and Technology
Zhen Zhan: Huazhong University of Science and Technology
Irshad Hussain: Lahore University of Management Sciences (LUMS), Lahore Cantt
Yang Lu: Hefei University of Technology
Tao He: Hefei University of Technology
Bi-En Tan: Huazhong University of Science and Technology

Nature Communications, 2023, vol. 14, issue 1, 1-10

Abstract: Abstract The use of light to regulate photocatalyzed reversible deactivation radical polymerization (RDRP) under mild conditions, especially driven by broadband light or sunlight directly, is highly desired. But the development of a suitable photocatalyzed polymerization system for large-scale production of polymers, especially block copolymers, has remained a big challenge. Herein, we report the development of a phosphine-based conjugated hypercrosslinked polymer (PPh3-CHCP) photocatalyst for an efficient large-scale photoinduced copper-catalyzed atom transfer radical polymerization (Cu-ATRP). Monomers including acrylates and methyl acrylates can achieve near-quantitative conversions under a wide range (450–940 nm) of radiations or sunlight directly. The photocatalyst could be easily recycled and reused. The sunlight-driven Cu-ATRP allowed the synthesis of homopolymers at 200 mL from various monomers, and monomer conversions approached 99% in clouds intermittency with good control over polydispersity. In addition, block copolymers at 400 mL scale can also be obtained, which demonstrates its great potential for industrial applications.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-38402-y Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38402-y

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-38402-y

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38402-y