Quantum simulation of thermodynamics in an integrated quantum photonic processor
F. H. B. Somhorst,
R. Meer,
M. Correa Anguita,
R. Schadow,
H. J. Snijders,
M. Goede,
B. Kassenberg,
P. Venderbosch,
C. Taballione,
J. P. Epping,
H. H. Vlekkert,
J. Timmerhuis,
J. F. F. Bulmer,
J. Lugani,
I. A. Walmsley,
P. W. H. Pinkse,
J. Eisert (),
N. Walk () and
J. J. Renema ()
Additional contact information
F. H. B. Somhorst: University of Twente
R. Meer: University of Twente
M. Correa Anguita: University of Twente
R. Schadow: Freie Universität Berlin
H. J. Snijders: QuiX Quantum B.V.
M. Goede: QuiX Quantum B.V.
B. Kassenberg: QuiX Quantum B.V.
P. Venderbosch: QuiX Quantum B.V.
C. Taballione: QuiX Quantum B.V.
J. P. Epping: QuiX Quantum B.V.
H. H. Vlekkert: QuiX Quantum B.V.
J. Timmerhuis: University of Twente
J. F. F. Bulmer: University of Bristol
J. Lugani: IIT Delhi
I. A. Walmsley: Imperial College London
P. W. H. Pinkse: University of Twente
J. Eisert: Freie Universität Berlin
N. Walk: Freie Universität Berlin
J. J. Renema: University of Twente
Nature Communications, 2023, vol. 14, issue 1, 1-10
Abstract:
Abstract One of the core questions of quantum physics is how to reconcile the unitary evolution of quantum states, which is information-preserving and time-reversible, with evolution following the second law of thermodynamics, which, in general, is neither. The resolution to this paradox is to recognize that global unitary evolution of a multi-partite quantum state causes the state of local subsystems to evolve towards maximum-entropy states. In this work, we experimentally demonstrate this effect in linear quantum optics by simultaneously showing the convergence of local quantum states to a generalized Gibbs ensemble constituting a maximum-entropy state under precisely controlled conditions, while introducing an efficient certification method to demonstrate that the state retains global purity. Our quantum states are manipulated by a programmable integrated quantum photonic processor, which simulates arbitrary non-interacting Hamiltonians, demonstrating the universality of this phenomenon. Our results show the potential of photonic devices for quantum simulations involving non-Gaussian states.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-38413-9 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38413-9
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-38413-9
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().