Ultrabroadband sound control with deep-subwavelength plasmacoustic metalayers
Stanislav Sergeev,
Romain Fleury and
Hervé Lissek ()
Additional contact information
Stanislav Sergeev: EPFL
Romain Fleury: EPFL
Hervé Lissek: EPFL
Nature Communications, 2023, vol. 14, issue 1, 1-7
Abstract:
Abstract Controlling audible sound requires inherently broadband and subwavelength acoustic solutions, which are to date, crucially missing. This includes current noise absorption methods, such as porous materials or acoustic resonators, which are typically inefficient below 1 kHz, or fundamentally narrowband. Here, we solve this vexing issue by introducing the concept of plasmacoustic metalayers. We demonstrate that the dynamics of small layers of air plasma can be controlled to interact with sound in an ultrabroadband way and over deep-subwavelength distances. Exploiting the unique physics of plasmacoustic metalayers, we experimentally demonstrate perfect sound absorption and tunable acoustic reflection over two frequency decades, from several Hz to the kHz range, with transparent plasma layers of thicknesses down to λ/1000. Such bandwidth and compactness are required in a variety of applications, including noise control, audio-engineering, room acoustics, imaging and metamaterial design.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-38522-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38522-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-38522-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().