Compact A15 Frank-Kasper nano-phases at the origin of dislocation loops in face-centred cubic metals
Alexandra M. Goryaeva (),
Christophe Domain,
Alain Chartier,
Alexandre Dézaphie,
Thomas D. Swinburne,
Kan Ma,
Marie Loyer-Prost,
Jérôme Creuze and
Mihai-Cosmin Marinica ()
Additional contact information
Alexandra M. Goryaeva: Université Paris-Saclay, CEA, Service de recherche en Corrosion et Comportement des Matériaux, SRMP
Christophe Domain: EDF-R&D, Département Matériaux et Mécanique des Composants (MMC), Les Renardieres
Alain Chartier: Service de recherche en Corrosion et Comportement des Matériaux
Alexandre Dézaphie: Université Paris-Saclay, CEA, Service de recherche en Corrosion et Comportement des Matériaux, SRMP
Thomas D. Swinburne: Aix-Marseille Université, CNRS
Kan Ma: Université Paris-Saclay, CEA, Service de recherche en Corrosion et Comportement des Matériaux, SRMP
Marie Loyer-Prost: Université Paris-Saclay, CEA, Service de recherche en Corrosion et Comportement des Matériaux, SRMP
Jérôme Creuze: Université Paris-Saclay
Mihai-Cosmin Marinica: Université Paris-Saclay, CEA, Service de recherche en Corrosion et Comportement des Matériaux, SRMP
Nature Communications, 2023, vol. 14, issue 1, 1-12
Abstract:
Abstract It is generally considered that the elementary building blocks of defects in face-centred cubic (fcc) metals, e.g., interstitial dumbbells, coalesce directly into ever larger 2D dislocation loops, implying a continuous coarsening process. Here, we reveal that, prior to the formation of dislocation loops, interstitial atoms in fcc metals cluster into compact 3D inclusions of A15 Frank-Kasper phase. After reaching the critical size, A15 nano-phase inclusions act as a source of prismatic or faulted dislocation loops, dependent on the energy landscape of the host material. Using cutting-edge atomistic simulations we demonstrate this scenario in Al, Cu, and Ni. Our results explain the enigmatic 3D cluster structures observed in experiments combining diffuse X-ray scattering and resistivity recovery. Formation of compact nano-phase inclusions in fcc structure, along with previous observations in bcc structure, suggests that the fundamental mechanisms of interstitial defect formation are more complex than historically assumed and require a general revision. Interstitial-mediated formation of compact 3D precipitates can be a generic phenomenon, which should be further explored in systems with different crystallographic lattices.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-38729-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38729-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-38729-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().