Thermal disruption of a Luttinger liquid
Danyel Cavazos-Cavazos,
Ruwan Senaratne,
Aashish Kafle and
Randall G. Hulet ()
Additional contact information
Danyel Cavazos-Cavazos: Rice University
Ruwan Senaratne: Rice University
Aashish Kafle: Rice University
Randall G. Hulet: Rice University
Nature Communications, 2023, vol. 14, issue 1, 1-6
Abstract:
Abstract The Tomonaga–Luttinger liquid (TLL) theory describes the low-energy excitations of strongly correlated one-dimensional (1D) fermions. In the past years, a number of studies have provided a detailed understanding of this universality class. More recently, theoretical investigations that go beyond the standard low-temperature, linear-response TLL regime have been developed. While these provide a basis for understanding the dynamics of the spin-incoherent Luttinger liquid, there are few experimental investigations in this regime. Here we report the observation of a thermally induced, spin-incoherent Luttinger liquid in a 6Li atomic Fermi gas confined to 1D. We use Bragg spectroscopy to measure the suppression of spin-charge separation and the decay of correlations as the temperature is increased. Our results probe the crossover between the coherent and incoherent regimes of the Luttinger liquid and elucidate the roles of the charge and the spin degrees of freedom in this regime.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-38767-0 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38767-0
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-38767-0
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().