EconPapers    
Economics at your fingertips  
 

Cu-based high-entropy two-dimensional oxide as stable and active photothermal catalyst

Yaguang Li (), Xianhua Bai, Dachao Yuan, Chenyang Yu, Xingyuan San, Yunna Guo, Liqiang Zhang () and Jinhua Ye ()
Additional contact information
Yaguang Li: Hebei University
Xianhua Bai: Hebei University
Dachao Yuan: Hebei Agricultural University
Chenyang Yu: Hebei University
Xingyuan San: Hebei University
Yunna Guo: Yanshan University
Liqiang Zhang: Yanshan University
Jinhua Ye: Hebei University

Nature Communications, 2023, vol. 14, issue 1, 1-10

Abstract: Abstract Cu-based nanocatalysts are the cornerstone of various industrial catalytic processes. Synergistically strengthening the catalytic stability and activity of Cu-based nanocatalysts is an ongoing challenge. Herein, the high-entropy principle is applied to modify the structure of Cu-based nanocatalysts, and a PVP templated method is invented for generally synthesizing six-eleven dissimilar elements as high-entropy two-dimensional (2D) materials. Taking 2D Cu2Zn1Al0.5Ce5Zr0.5Ox as an example, the high-entropy structure not only enhances the sintering resistance from 400 °C to 800 °C but also improves its CO2 hydrogenation activity to a pure CO production rate of 417.2 mmol g−1 h−1 at 500 °C, 4 times higher than that of reported advanced catalysts. When 2D Cu2Zn1Al0.5Ce5Zr0.5Ox are applied to the photothermal CO2 hydrogenation, it exhibits a record photochemical energy conversion efficiency of 36.2%, with a CO generation rate of 248.5 mmol g−1 h−1 and 571 L of CO yield under ambient sunlight irradiation. The high-entropy 2D materials provide a new route to simultaneously achieve catalytic stability and activity, greatly expanding the application boundaries of photothermal catalysis.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41467-023-38889-5 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38889-5

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-023-38889-5

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38889-5