NO at low concentration can enhance the formation of highly oxygenated biogenic molecules in the atmosphere
Wei Nie (),
Chao Yan,
Liwen Yang,
Pontus Roldin,
Yuliang Liu,
Alexander L. Vogel,
Ugo Molteni,
Dominik Stolzenburg,
Henning Finkenzeller,
Antonio Amorim,
Federico Bianchi,
Joachim Curtius,
Lubna Dada,
Danielle C. Draper,
Jonathan Duplissy,
Armin Hansel,
Xu-Cheng He,
Victoria Hofbauer,
Tuija Jokinen,
Changhyuk Kim,
Katrianne Lehtipalo,
Leonid Nichman,
Roy L. Mauldin,
Vladimir Makhmutov,
Bernhard Mentler,
Andrea Mizelli-Ojdanic,
Tuukka Petäjä,
Lauriane L. J. Quéléver,
Simon Schallhart,
Mario Simon,
Christian Tauber,
António Tomé,
Rainer Volkamer,
Andrea C. Wagner,
Robert Wagner,
Mingyi Wang,
Penglin Ye,
Haiyan Li,
Wei Huang,
Ximeng Qi,
Sijia Lou,
Tengyu Liu,
Xuguang Chi,
Josef Dommen,
Urs Baltensperger,
Imad El Haddad,
Jasper Kirkby,
Douglas Worsnop,
Markku Kulmala,
Neil M. Donahue,
Mikael Ehn and
Aijun Ding ()
Additional contact information
Wei Nie: Nanjing University
Chao Yan: Nanjing University
Liwen Yang: Nanjing University
Pontus Roldin: Lund University
Yuliang Liu: Nanjing University
Alexander L. Vogel: Goethe University Frankfurt
Ugo Molteni: Paul Scherrer Institute
Dominik Stolzenburg: University of Helsinki
Henning Finkenzeller: University of Colorado Boulder
Antonio Amorim: Universidade de Lisboa
Federico Bianchi: University of Helsinki
Joachim Curtius: Goethe University Frankfurt
Lubna Dada: University of Helsinki
Danielle C. Draper: University of California
Jonathan Duplissy: University of Helsinki
Armin Hansel: University of Innsbruck
Xu-Cheng He: University of Helsinki
Victoria Hofbauer: Carnegie Mellon University
Tuija Jokinen: University of Helsinki
Changhyuk Kim: Pusan National University
Katrianne Lehtipalo: University of Helsinki
Leonid Nichman: National Research Council Canada
Roy L. Mauldin: Carnegie Mellon University
Vladimir Makhmutov: P.N. Lebedev Physical Institute of the Russian Academy of Sciences
Bernhard Mentler: Ion Molecule Reactions & Environmental Physics Group Institute of Ion Physics and Applied Physics Leopold-Franzens University
Andrea Mizelli-Ojdanic: University of Vienna
Tuukka Petäjä: University of Helsinki
Lauriane L. J. Quéléver: University of Helsinki
Simon Schallhart: University of Helsinki
Mario Simon: Goethe University Frankfurt
Christian Tauber: University of Vienna
António Tomé: IDL-Universidade da Beira Interior, Rua Marquês D’Ávila e
Rainer Volkamer: University of Colorado Boulder
Andrea C. Wagner: Goethe University Frankfurt
Robert Wagner: University of Helsinki
Mingyi Wang: California Institute of Technology
Penglin Ye: Fudan University
Haiyan Li: Harbin Institute of Technology
Wei Huang: University of Helsinki
Ximeng Qi: Nanjing University
Sijia Lou: Nanjing University
Tengyu Liu: Nanjing University
Xuguang Chi: Nanjing University
Josef Dommen: Paul Scherrer Institute
Urs Baltensperger: Paul Scherrer Institute
Imad El Haddad: Paul Scherrer Institute
Jasper Kirkby: CERN
Douglas Worsnop: University of Helsinki
Markku Kulmala: Nanjing University
Neil M. Donahue: Carnegie Mellon University
Mikael Ehn: University of Helsinki
Aijun Ding: Nanjing University
Nature Communications, 2023, vol. 14, issue 1, 1-11
Abstract:
Abstract The interaction between nitrogen monoxide (NO) and organic peroxy radicals (RO2) greatly impacts the formation of highly oxygenated organic molecules (HOM), the key precursors of secondary organic aerosols. It has been thought that HOM production can be significantly suppressed by NO even at low concentrations. Here, we perform dedicated experiments focusing on HOM formation from monoterpenes at low NO concentrations (0 – 82 pptv). We demonstrate that such low NO can enhance HOM production by modulating the RO2 loss and favoring the formation of alkoxy radicals that can continue to autoxidize through isomerization. These insights suggest that HOM yields from typical boreal forest emissions can vary between 2.5%-6.5%, and HOM formation will not be completely inhibited even at high NO concentrations. Our findings challenge the notion that NO monotonically reduces HOM yields by extending the knowledge of RO2-NO interactions to the low-NO regime. This represents a major advance towards an accurate assessment of HOM budgets, especially in low-NO environments, which prevails in the pre-industrial atmosphere, pristine areas, and the upper boundary layer.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-023-39066-4 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39066-4
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-023-39066-4
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().